双闭环直流电动机数字调速系统设计x
时间:2023-03-20 03:57:17 热度:0°C
自动化与电子工程学院计算机控制技术课程设计报告课程名称:双闭环直流电动机数字调速系统设计学 院: 专业班级: 学生姓名: 完成时间: 报告成绩: 评阅意见: 评阅教师 日期 计算机控制技术课程设计任务书题目:双闭环直流电动机数字调速系统设计主要技术数据和设计要求主要技术数据:直流电动机(对象)的主要技术参数如下:直流电动机 Z2-41型 Ped=3kW Ued=220v Ied=17/3 ned=1500r/min电枢回路总电阻 R=2/50欧姆电动机回路电磁时间常数 TL=0/017s电动机机电时间常数 TM=0/076s电动机电势常数 Ce=0/1352V/rmin)晶闸管装置放大倍数 Ks=30品闸管整流电路滞后时间 Ts=0/0017s主要技术指标:速度调节范围0-1500r/min,速度控制精度0/1%(额定转速时),电流过载倍数为1/5倍。主要要求:直流电动机的控制电源采用PWM控制方式,应采用专用PWM控制集成电路,在其输入电压为0-5伏时可以输出0-264伏电压,为电机提供最大25安培输出电流。不考虑电源的滞后时间。速度检测采用光电编码器(光电脉冲信号发生器),且假定其输出的A、B两相脉冲经光电隔离辨向后获得每转1024个脉冲的角度分辨率和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流为50安培。采用双闭环环(速度环和电流环)控制方式。计算机则要求采用51内核的单片机实现控制。设计步骤一、总体方案设计二、控制系统的建模和数字***设计三、硬件的设计和实现1/ 选择计算机机型(采用51内核的单片机);2/ 设计支持计算机工作的外围电路(EPROM、RAM、I/O端口等);3/ 设计键盘、显示接口电路4/ 设计输入输出通道(速度反馈、电流反馈电路、输出驱动电路等);四、 软件设计1分配系统资源,编写系统初始化和主程序模块;2编写数字调节器软件模块;3编写A/D转换器处理程序模块;五、编写课程设计说明书,绘制完整的系统电路图。目录第一章 系统硬件电路设计5第一节 系统总体设计51/1系统方案选择与总体结构设计51/1/2双闭环直流调速系统电路原理61/1/3双闭环直流调速系统动态数学模型71/1/4数字控制双闭环直流调速系统方框图81/1/5数字式双闭环直流调速系统硬件结构图81/1/6单片机简介9第二节 主电路的设计及参数计算111/2/1整流变压器的计算与设计111/2/2开关器件IGBT参数计算与选择111/2/3电阻、电容的选择111/2/4整流功率二极管的选择111/2/5平波电抗器的选择及计算121/2/6快速熔断器的选择及计算12第三节 调节器的选择与计算131/3/1确定电流调节器时间常数131/3/2电流调节器结构的选择131/3/3电流调节器参数计算131/3/4确定转速调节器时间常数141/3/5转速调节器结构的选择141/3/6转速调节器参数计算14第四节 PWM信号发生电路设计151/4/1PWM***设计151/4/2驱动电路设计181/4/3转速检测电路设计181/4/5A/D转化及芯片选择211/4/6键盘显示单元221/4/7泵生***电路设计241/4/8制动控制单元设计251/4/9泵升电压控制电路261/4/10故障检测电路设计27第二章系统软件程序设计29第一节 主程序设计292/1/1程序流程图292/1/2主程序30第二节 中断子程序流程图31第三节 PI控制子程序设计31第四节 PWM程序设计33第五节 M法数字测速及动态LED显示程序设计342/5/1电机测速计程序35第六节 A/D转换程序39第七节故障保护程序设计402/7/1故障保护程序:402/7/2故障流程图42第三章 系统MATLAB仿真43第一节 系统的建模与参数设置433/1/1直流电动机的数学模型433/1/2转速电流双闭环调速系统的数学模型433/1/3建立仿真模型44第二节 仿真结果453/2/1仿真波形45结论46摘 要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2112S作为直流电机正转调速功率放大电路的驱动模块来完成了在主电路中对直流电机的控制。另外,本系统中使用了光电编码器对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面,文章中详细介绍了PI运算程序,单片机产生PWM波形的程序,初始化程序等的编写思路和具体的程序实现,M法数字测速及动态LED显示程序设计,A/D转换程序及动态扫描LED显示程序和故障检测程序及流程图。关键词: PWM信号 直流调速 双闭环 PI调节AbstractThis paper mainly studied the use of MCS - 51 series microcontroller control PWM signal to control dc motor speed so as to realize the method/ Article USES a special chip is made up of a PWM signal generation system/ and in this paper/ the principle of the PWM signal generation method and how to through the software programming of the PWM signal duty cycle to regulate/ to control the input signal waveform/ etc are explained in detail/ In addition/ this article adopts the chip IR2112S as is a dc motor speed power amplification circuit driver module to complete the control of dc motor in main circuit/ In addition/ this system USES photoelectric encoder to measure the rotation speed of dc motor/ after filter circuit/ the measured value to the A/D converter/ and ultimately feedback as input to the MCU PI arithmetic/ so as to realize the control of the dc motor speed/ In terms of software/ the article introduces in detail PI algorithm/ single chip microcomputer to produce PWM waveform procedures/ initialization program writing ideas and specific program implementation/ such as M method digital speed measuring and dynamic LED display program design/ A/D conversion program and dynamic scanning LED display program and the fault detection procedure and flow chart/前 言本文主要研究了利用MCS-51系列单片机,通过PWM方式控制直流电机调速的方法。冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论基础,使输出端得到一系列幅值相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。PWM控制的基本原理很早就已经提出,但是受电力电子器件发展水平的制约,在上世纪80年代以前一直未能实现。直到进入上世纪80年代,随着全控型电力电子器件的出现和迅速发展,PWM控制技术才真正得到应用。随着电力电子技术、微电子技术和自动控制技术的发展以及各种新的理论方法,如现代控制理论、非线性系统控制思想的应用,PWM控制技术获得了空前的发展。到目前为止,已经出现了多种PWM控制技术。PWM控制技术以其控制简单、灵活和动态响应好的优点而成为电力电子技术最广泛应用的控制方式,也是人们研究的热点。由于当今科学技术的发展已经没有了学科之间的界限,结合现代控制理论思想或实现无谐振软开关技术将会成为PWM控制技术发展的主要方向之一。本文就是利用这种控制方式来改变电压的占空比实现直流电机速度的控制。文章中采用了专门的芯片组成了PWM信号的发生系统,然后通过放大来驱动电机。利用编码器测得电机速度,经过滤波电路得到直流电压信号,把电压信号输入给A/D转换芯片最后反馈给单片机,在内部进行PI运算,输出控制量完成闭环控制,实现电机的调速控制。第一章 系统硬件电路设计第一节 系统总体设计1/1/1 系统方案选择与总体结构设计调速方案的优劣直接关系到系统调速的质量。根据电机的型号及参数选择最优方案,以确保系统能够正常,稳定地运行。本系统采用直流双闭环调速系统,使系统达到稳态无静差,调速范围0-1500r/min/电流过载倍数为1/5倍,速度控制精度为0/1%(额定转速时)。 主要技术数据和设计要求1/ 系统控制对象的确定主要技术数据:直流电动机(对象)的主要技术参数如下:直流电机型号:Z2-41型 Ped=3kW Ued=220V Ied=17/3A ned=1500r/min电枢回路总电阻 R=2/50电动机回路电磁时间常数 TL=0/017s电动机机电时间常数TM=0/076s电动机电势常数Ce=0/1352V/rmin晶闸管装置放大倍数 Ks=53晶闸管整流电路滞后时间Ts=0/0017s主要技术指标:速度调节范围 0-1500 r/min,速度控制精度 0/1%(额定转速时),电流过载倍数为1/5倍。主要要求:直流电动机的控制电源采用晶闸管装置,在其输入电压为0-5伏是可以输出0-264伏电压,为电机提供最大25安培输出电流。速度检测采用光电编码器(光电脉冲信号发生器),且假定其输出的A、B两相脉冲经光电隔离辨向后获得每转1024个脉冲的角度分辨率和方向信号。电流传感器采用霍尔电流传感器,其原副边电流比为1000:1,额定电流为50安培。采用双闭环环(速度环和电流环)控制方式。计算机则要求采用51内核的单片机实现控制。2/ 电动机供电方案选择变电压调速是直流调速系统用的主要方法,调节电枢供电电压所需的可控制电源通常有3种:旋转电流机组,静止可控整流器,直流斩波器和脉宽调制变换器。旋转变流机组简称G-M系统,用交流电动机和直流发电机组成机组,以获得可调的直流电压。适用于调速要求不高,要求可逆运行的系统,但其设备多、体积大、费用高、效率低、维护不便。用静止的可控整流器,例如,晶闸管可控整流器,以获得可调直流静止可控整流器又称V-M系电压。通过调节触发装置GT的控制电压来移动触发脉冲的相位,即可改变Ud,从而实现平滑调速,且控制作用快速性能好,提高系统动态性能。直流斩波器和脉宽调制交换器采用PWM,用恒定直流或不可控整流电源供电,利用直流斩波器或脉宽调制变换器产生可变的平均电压。与VM系统相比,PWM系统在很多方面有较大的优越性:1) 主电路线路简单,需要的功率器件少;2) 开端频率高,电流容易连续,谐波少,电机损耗及发热都较小:3) 低速性能好,稳速精度该,调速范围宽,可达1:10000左右;4) 若与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强;5) 功率开关器件工作在开关状态,道通损耗小,当开关频率适当时,开关损耗也不大,因而装置效率高;6) 直流电源采用不控整流时,电网功率因数比相控整流高。本设计应脉宽调速要求,采用直流PWM调速系统。3/ 晶体管PWM功率放大器方案选择方案一 :单极性控制方式,这种控制方式的特点是在一个开关周期内两只功率管以较高的开关频率互补开关,保证可以得到理想的正弦输出电压:另两只功率管以较低的输出电压基波频率工作,从而在很大程度上减小了开关损耗。但又不是固定其中一个桥臂始终为低频(输出基频),另一个桥臂始终为高频(载波频率),而是每半个输出电压周期切换工作,即同一个桥臂在前半个周期工作在低频,而在后半周则工作在高频,这样可以使两个桥臂的功率管工作状态均衡,对于选用同样的功率管时,使其使用寿命均衡,对增加可靠性有利。 方案二 :双极性调制方式的特点是4个功率管都工作在较高频率(载波频率),双极性控制的桥式可逆PWM变换器有以下优点:1) 电流一定连续;2) 可使电机在四象限运行;3) 电机停止时有微振电流,可以消除静摩擦死区;4) 低速平稳性好,系统的调速范围可达1:20000左右;5) 低速时,每个开关器件的驱动脉冲仍较宽,有利于器件的可靠导。本设计选用双极性控制的桥式可逆PWM变换器。1/1/2 双闭环直流调速系统电路原理随着调速系统的不断发展和应用,传统的采用 PI 调节器的单闭环调速系统既能实现转速的无静差调节,又能较快的动态响应只能满足一般生产机械的调速要求。为了提高生产率,要求尽量缩短起动、制动、反转过渡过程的时间,最好的办法是在过渡过程中始终保持电流(即动态转矩)为允许的最大值,使系统尽最大可能加速起动,达到稳态转速后,又让电流立即降低,进入转矩与负载相平衡的稳态运行。要实现上述要求,其唯一的途径就是采用电流负反馈控制方法,即采用速度、电流双闭环的调速系统来实现。在电流控制回路中设置一个调节器,专门用于调节电流量,从而在调速系统中设置了转速和电流两个调节器,形成转速、电流双闭环调速控制。双闭环调速控制系统中采用了两个调节器,分别调节转速和电流,二者之间实现串级连接。图11/1为转速、电流双闭环直流调速系统的原理图。图中两个调节器ASR和ACR分别为转速调节器和电流调节器,二者串级连接,即把转速调节器的输出作为电流调节器的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置。电流环在内,称之为内环;转速环在外,称之为外环。两个调节器输出都带有限幅,ASR的输出限幅什Uim决定了电流调节器ACR的给定电压最大值Uim,对就电机的最大电流;电流调节器ACR输出限幅电压Ucm***了整流器输出最大电压值,限最小触发角。图1-1/1 双闭环直流调速系统电路原理图1/1/3 双闭环直流调速系统动态数学模型双闭环直流调速系统动态结构图如图1-1/2所示。图中和分别表示转速调节器和电流调节器的传递函数。如果采用PI调节器,则有(1-1)(1-2)为了引出电流反馈,在电动机的动态框图中必须把电枢电流显露出来。图1-1/2 双闭环直流调速系统动态结构图1/1/4 数字控制双闭环直流调速系统方框图根据设计要求,本系统设计为全数字式控制方式,因此要求微型计算机完成:电流环***运算、速度环***运算、位置环***运算,以及与它们相应的反馈信号的采样和数字信号处理。本系统采用霍尔元件作为检测电动机电枢电流的传感器/其电流容量为50A/转换比例为1000:1。霍尔元件检测得到的弱电流信号经转换、滤波、放大后/变成与电枢电流成比例的05V的直流电压信号/再经A/D转换电路/将模拟电压转换成数字量/输入微型计算机。本系统选用光电脉冲信号发生器作为速度反馈的测量元件/光电脉冲信号发生器将电动机转子的角位移量转换成脉冲序列/通过计数器定时计数即可得到电动机转速的数字式反馈量。本系统由微型计算机来实现整个系统的控制/用全数字方式来取代传统的模拟控制方式/不仅提高了系统的可靠性、灵活性/而且还为整个系统的多功能、智能化提供了必要条件。 经上述考虑/本系统组成的方框图如图1-1/3所示。 数字式位置***数字式速度***数字式电流***数字式PWM信号发生器PWM功率放大器M信号转换滤波放大A/D转换/PG光电隔离倍频变向位置可逆计数器数字式速度测量计数器位置给定+-霍尔元件+图1-1/3 数字式双闭环直流调速系统方框图1/1/5 数字式双闭环直流调速系统硬件结构图 数字式双闭环直流调速系统硬件结构图如图1-1/4所示图1-1/4 数字式双闭环直流调速系统硬件结构图1/1/6 单片机简介本系统要求微型计算机完成电流环、速度环和位置环的控制算法运算以及相应的反馈信号数字化测量和采样/接收和处理上位微型计算机送给伺服系统的指令/采集伺服系统的有关信息并反馈到上位微型计算机等。其中/电流环控制要求微型计算机有很快的响应速度/其采样频率比较高。另外/为了保证足够的控制精度和运算速度/对微型计算机字长和指令功能也有更高的要求。本系统选用我们比较熟悉的8051作为微型计算机。18051单片机的基本组成 8051单片机由CPU和8个部件组成,它们都通过片内单一总线连接,其基本结构依然是通用CPU加上外围芯片的结构模式,但在功能单元的控制上采用了特殊功能寄存器的集中控制方法。其基本组成如下图所示: 图1-1/5 8051单片机基本组成2CPU及8个部件的作用功能介绍如下***处理器CPU:它是单片机的核心,完成运算和控制功能。内部数据存储器:8051芯片***有256个RAM单元,能作为存储器使用的只是前128个单元,其地址为00H7FH。通常说的内部数据存储器就是指这前128个单元,简称内部RAM。特殊功能寄存器:是用来对片内各部件进行管理、控制、监视的控制寄存器和状态寄存器,是一个特殊功能的RAM区,位于内部RAM的高128个单元,其地址为80HFFH。内部程序存储器:8051芯片内部共有4K个单元,用于存储程序、原始数据或表格,简称内部ROM。并行I/O口:8051芯片内部有4个8位的I/O口(P0,P1,P2,P3),以实现数据的并行输入输出。串行口:它是用来实现单片机和其他设备之间的串行数据传送。定时器:8051片内有2个16位的定时器,用来实现定时或者计数功能,并且以其定时或计数结果对计算机进行控制。中断控制系统:该芯片共有5个中断源,即外部中断2个,定时/计数中断2个和串行中断1个。振荡电路:它外接石英晶体和微调电容即可构成8051单片机产生时钟脉冲序列的时钟电路。系统允许的最高晶振频率为12MHz。38051单片机引脚图图1-1/6 8051单片机引脚图第二节 主电路的设计及参数计算由于给定直流电动机的额定电压为220V,为保证供电质量,应采用三相降压变压器将电源电压降低;为避免三次谐波电动势的***影响,三次谐波电流对电源的干扰,主变压器采用/Y联结。1/2/1 整流变压器的计算与设计变压器二次侧电压:U2的确定原则是要保证在电动机的整个起动过程中,整流装置都能够提供要求的最大电流值1/5*Idnom,忽略IGBT压降和换相重叠压降后可列出下列公式:电动机Ce=0/1352Udm=2/34*U2Ce*Nn+Idm考虑到电网电压波动,取波动系数为0 /95,则有/U2=(Ce*Nn+Idm*R)/2/34=(0/1352*1500+1/5*17/3*2/5)/(0/95*2/34)= 120/41V整流器视在功率: Sn=3u2I2=3*17/3*1/5*120/41=9/37 KVA故,变压器一次侧电压一般由供电电源决定取 u1=220V =9/37*1000/(3*220)=14/20 A 故变压器应选择220V/220V视在功率为40KVA1/2/2 开关器件IGBT参数计算与选择由经验公式得额定电压为440V时开关器件IGBT的耐压应选1200V的反向最大电压: U=1200VI=1/5Id=1/5*9/37=14/06A1/2/3 电阻、电容的选择由限流电阻计算公式:R0= Ud02/Pe= (Ce*Nn+Idn*R) 2 / Pe =220 2/15000=3/23滤波电容器由经验公式求得:C1=C2=4uF/V* Ud0=4*220=880uF并联电阻一般取56-100k/则有:R1=R2=56k1/2/4 整流功率二极管的选择选择功率二极管的耐压值 :U=(2-3)Um=(2-3)*sqr(2)*U2通态电流值:Ita=(1/5-2)Ivt=(1/5-2)*17/3/sqr(3)/1/57选取功率二极管数据为:900V/50A1/2/5 平波电抗器的选择及计算平波电抗器:平波电抗器用于整流以后的直流回路中。整流电路的脉波数总是有限的,在输出的整直电压中总是有纹波的。这种纹波往往是有害的,需要由平波电抗器加以抑制。平波电抗器的电感量一般按低速轻载时保证电流连续的条件来选择。对于三相桥式整流电路: L=0/693U2/Idmin又因为一般Idmin为电动机额定电流的5%10%,这里去10%/In=17/3A因此:L=0/693U2/1/73又因为U2=120/41V所以:L=36/09mH1/2/6 快速熔断器的选择及计算熔断器作用: 当电路发生故障或异常时,伴随着电流不断升高,可能损坏电路中的某些重要器件或贵重器件,也有可能烧毁电路甚至造成火灾。若安置了熔断器,那么,熔断器就会在电流异常升高到一定的高度和一定的时候,自身熔断切断电流,从而起到保护电路安全运行的作用。快速熔断器的额定电流的计算如下:Itn=*Ita/2 (A)其中Ita为晶闸管的额定通态平均电流,即为28/9A。因此:Itn=45/4A。快速熔断器的额定电压Utn可用下列公式计算:UtnKut*Uv /1/4Uv =U2=120/41V;Kut为元件电压计算系数/查表得2/45。 因此:Utn501/7V第三节 调节器的选择与计算反馈系数的确定:电枢电流是双极性的,A/D转换的结果为10位二进制数转速反馈系数: = 10V/nN=0/0066 min/r电流反馈系数: = U*im/Idm=10/(1/5*17/3)=0/385/A1/3/1 确定电流调节器时间常数1) 整流装置滞后时间常数Ts=0/0017s。2) 电流滤波时间常数 Toi/取Toi=4ms=0/004s。3) 电流环小时间常数之Ti近似处理,取Ti =Ts+Toi=0/0057s。4) 电枢回路电磁时间常数 Tl0/017s5) 电力拖动系统时间常数Tm=0/076s6) Ks=401/3/2 电流调节器结构的选择 根据设计要求并保证稳态电流无差,可按典型I型系统设计电流调节器。电流环控制对象是双惯性型的,因此可用PI型电流调节器,其传递函数为WACR(S)=Ki(is +1)/isKi-电流调节器的比例系数;i-电流调节器的超前时间常数。检查对电源电压的抗干扰性能:Tl /TI =0/017s/0/0057s=2/98/参照教材中表2-3的典型型系统动态抗扰性能,各项指标都是可以接受的。 图1-3/1 电流环等效近似处理后校正成为典型I系统框图1/3/3 电流调节器参数计算电流调节器超前时间常数: i=Tl=0/017s电流环开环增益:要求i5时/查表得KITi=0/5/因此 KI=0/5/0/0057s=87/71s-1于是,ACR的比例系数为: Ki=KIiR/Ks=17/54电流环采样角频率: Wsi=10Wci=877/1s-1电流环采样时间: Ti=1/(Wsi/2pi)=0/007s1/3/4 确定转速调节器时间常数1)电流环等效时间常数1/KI 已知KITi=0/5,则 1/KI2Ti20/0057s0/0114s2)转速时间常数Ton。取Ton=0/01s3)转速小时间常数 Tn。按小时间常数近似处理,取 Tn1/KITon0/0214s1/3/5 转速调节器结构的选择转速环开环传递函数应共有两个积分环节,所以应该设计成典型II系统,系统同时也能满足动态抗扰性能好的要求。图1-3/2转速环等效近似处理后校正成为典型II系统框图ASR也应该采用PI调节器,其传递函数为:WASR(s)= Kn(ns +1)/nsKn-转速调节器的比例系数;n-转速调节器的超前时间常数。1/3/6 转速调节器参数计算按跟随和抗扰性能都较好的原则,取h=5,则ASR的超前时间常数为n=hTn=50/0214s=0/107s转速开环增益: KN=(h+1)/2h2Tn2=6/(2520/02142)=263/03s-2ASR的比例系数为: Kn=(h+1)CeTm/2hRTn=18/28转速环采样角频率: Wsn=10Wcn=280/37s-1电流环采样时间: Tn=1/(Wsn/2pi)=0/0224s第四节 PWM信号发生电路设计1/4/1 PWM***设计1、PWM信号发生电路设计 图1-4/1 PWM信号发生电路PWM波可以由具有PWM输出的单片机通过编程来得以产生,也可以采用PWM专用芯片来实现。当PWM波的频率太高时,它对直流电机驱动的功率管要求太高,而当它的频率太低时,其产生的电磁噪声就比较大,在实际应用中,当PWM波的频率在18KHz左右时,效果最好。在本系统内,采用了两片4位数值比较器4585和一片12位串行计数器4040组成了PWM信号发生电路。两片数值比较器4585,即图上U2、U3的A组接12位串行4040计数输出端Q2Q9,而U2、U3的B组接到单片机的P1端口。只要改变P1端口的输出值,那么就可以使得PWM信号的占空比发生变化,从而进行调速控制。12位串行计数器4040的计数输入端CLK接到单片机C51晶振的振荡输出XTAL2。计数器4040每来8个脉冲,其输出Q2Q9加1,当计数值小于或者等于单片机P1端口输出值X时,图中U2的(AB)输出端保持为低电平,而当计数
温馨提示:
1. 文档收藏网仅展示《双闭环直流电动机数字调速系统设计x》的部分公开内容,版权归原著者或相关公司所有。
2. 文档内容来源于互联网免费公开的渠道,若文档所含内容侵犯了您的版权或隐私,请通知我们立即删除。
3. 当前页面地址:https://doc.bogoing.com/doc/b848252e419108f0.html 复制内容请保留相关链接。